
R7RS Considered Unifier of Previous Standards ∗

William D Clinger

Northeastern University

will@ccs.neu.edu

Abstract

The R7RS (small) language standard can be implemented

while preserving near-perfect backward compatibility with

the R6RS standard and substantial compatibility with the

R5RS and IEEE/ANSI standards for the Scheme program-

ming language. When this is done, as in Larceny, R6RS

Scheme becomes a proper subset of R7RS Scheme.

1. Introduction

Portability and interoperability are two different things, and

often come into conflict with each other. When program-

ming languages are specified, portability can be increased

(and interoperability diminished) by inventing some specific

semantics for all corner cases while forbidding extensions to

standard syntax and procedures. Interoperability can be in-

creased (and portability diminished) by leaving unimportant

corner cases unspecified while allowing implementations to

generalize syntax and semantics in ways that simplify inter-

operation with other standards and components.

Consider, for example, the port-positionprocedure of

R6RS Scheme [23]. Its first draft specification, based on a

Posix feature that assumes every character is represented by

a single byte, would have precluded efficient interoperation

with UTF-8, UTF-16, and Windows [20]. Subsequent drafts

weakened that specification, increasing interoperability at

the expense of allowing port positions to behave somewhat

differently on different machines and in different implemen-

tations of the standard.

The R6RS tended to resolve those conflicts in favor of

portability, however, while the R7RS tended to favor interop-

erability [17, 21, 23]. It is therefore fairly easy for an R7RS-

conforming implementation to preserve backward compat-

ibility with R6RS and SRFI libraries and to provide con-

venient access to libraries and components written in other

languages, but it is considerably more difficult for R6RS-

conforming implementations to avoid creating barriers to in-

teroperation with R7RS and SRFI libraries. That asymme-

try between the R7RS and R6RS standards often goes unre-

marked and its importance under-appreciated when incom-

patibilities between those two standards are discussed.

∗ Copyright 2015 William D Clinger

Throughout this paper, R7RS (without parenthetical dis-

ambiguation) means the R7RS (small) language standard,

which was endorsed in 2013 after its ninth draft had been

approved by 88.9% of the votes cast [17]. Six of the seven

votes cast against the draft included comments expressing

concern about incompatibilities with the previous R6RS or

R5RS standards [12, 21]. These comments accounted for 17

of the 61 comments that required a response from Working

Group 1 before the R7RS language standard was endorsed

[5]. Another 7 of the 61 comments expressed similar con-

cerns but accompanied votes cast in favor of the draft.

Although the R7RS language standard does not mandate

compatibility with previous standards, it turns out that the

R7RS can be implemented while preserving near-perfect

backward compatibility with the R6RS standard and sub-

stantial compatibility with the R5RS and IEEE/ANSI stan-

dards. When this is done, as in Larceny v0.98, R6RS Scheme

becomes a proper subset of R7RS Scheme.

A year ago, the implementor of Sagittarius explained how

he implemented the R7RS language on top of an R6RS sys-

tem, allowing R7RS/R6RS libraries and programs to inter-

operate [11].

This paper builds upon that Sagittarius experience by de-

scribing design decisions and compromises that improve in-

teroperability between R7RS/R6RS libraries and programs.

This paper also describes several open-source components

that may be of interest to other implementors of R7RS/R6RS

systems, including a portable implementation of Unicode

7.0 and other libraries along with test suites and bench-

marks used here to appraise current support for the R7RS

and R6RS standards.

2. Larceny

Larceny v0.98, released in March 2015 [1], supports the

R7RS, R6RS, R5RS, and IEEE/ANSI standards for Scheme.

Throughout this paper, “Larceny” refers to two imple-

mentations of Scheme that share source libraries, runtime

system, and compiler front end, but their different ap-

proaches to generating machine code justify classifying

them as separate implementations.

Native Larceny JIT-compiles all Scheme code to native

machine code for ARMv7 and IA32 (x86, x86-64) proces-



sors running Linux, OS X, or Windows. For faster loading,

files can also be compiled to machine code ahead of time.

Petit Larceny is a highly portable implementation that

uses an interpreter for read/eval/print loops but can compile

files to C code. Scheme code compiled by Petit Larceny runs

about half as fast as in native Larceny.

Larceny was the second implementation of the R6RS,

and was first to implement almost all of the R6RS standard.

Larceny was not so quick to implement the R7RS; at least

ten other systems were already supporting the R7RS (in

whole or in part) when Larceny v0.98 was released.

If pgm is an R7RS or R6RS program, then

larceny --r7r6 --program pgm

will run the program. Omitting --program pgm will en-

ter an R7RS-compatible read/eval/print loop in which all

libraries described by the R7RS and R6RS standards have

been pre-imported. Larceny’s --r7rs option is equivalent

to the --r7r6 option when a program is specified, but im-

ports only the (scheme base) library when the --program

option is omitted.

Larceny’s --r6rs option provides a legacy mode whose

primary purpose is to test whether R6RS programs limit

themselves to R6RS syntax and semantics. This --r6rs

mode enforces several “absolute requirements” of the R6RS

that prohibit extensions to R6RS syntax and procedures and

forbid interactive read/eval/print loops. As explained in the

next section, these prohibitions interfere with interoperabil-

ity.

3. More Honored in the Breach

Citing RFC 2119 [10], R6RS Chapter 2 says it uses the

words “must” and “must not” when stating an “absolute

requirement” or “absolute prohibition” of the specification.

The R6RS contains many such absolute requirements.

R6RS “mustard” absolutely forbids most extensions to lex-

ical syntax, library syntax, and semantics of procedures ex-

ported by standard libraries.

The R6RS also contains absolute requirements that have

the effect of forbidding interactive read/eval/print loops. Ac-

cording to chapter 8 of the R6RS rationale, the R6RS editors

adopted those requirements because they wanted to leave in-

teractive environments “completely in the hands of the im-

plementors” rather than run the risk of restricting “Scheme

implementations in undesirable ways” [18]. Their rationale

tells us the editors themselves believed the R6RS mustard

forbidding interactive read/eval/print loops would be “more

honored in the breach than the observance” [16].

That created precedent for honoring other absolute re-

quirements in the breach. Most implementations of the

R6RS default to a deliberately non-conformant mode that of-

fers at least some forbidden features such as a read/eval/print

loop or lexical extensions favored by the implementation.

Users who wish to run their programs in a less permissive

mode must disable extensions prohibited by the R6RS by

manipulating various flags and switches.

Some members of the Scheme community still find it

hard to believe the R6RS absolutely forbids many exten-

sions often regarded as desirable. It is therefore necessary

to examine a few examples in detail.

3.1 Example: lexical syntax

R6RS Chapter 4 says

An implementation must not extend the lexical or

datum syntax in any way, with one exception: it

need not treat the syntax #!<identifier>, for any

<identifier> (see section 4.2.4) that is not r6rs, as

a syntax violation, and it may use specific #!-prefixed

identifiers as flags indicating that subsequent input

contains extensions to the standard lexical or datum

syntax.

That absolute requirement would allow R6RS programs to

read data produced by R7RS programs when the data are

preceded by a flag such as #!r7rs, but it forbids extension

of the R6RS read procedure to accept unflagged R7RS syn-

tax for symbols, strings, characters, bytevectors, and circular

data structures.

Kent Dybvig suggested the #!r6rs flag in May 2006.

When I formally proposed addition of Dybvig’s suggestion,

I anticipated a future R7RS lexical syntax in which the

#!r6rs flag would mark data and source code that still used

R6RS syntax [2]:

I propose we add #!r6rs as a new external represen-

tation that every R6RS-conforming implementation

must support. Its purpose is to flag code that is writ-

ten in the lexical syntax of R6RS, to ease the eventual

transition from R6RS to R7RS lexical syntax.

Less than six weeks later, in the R6RS editors’ status report,

the #!r6rs flag had come to mean R6RS lexical syntax must

be rigidly enforced, with all lexical extensions forbidden

unless preceded by a #! flag other than #!r6rs [7]:

• The new syntax #!r6rs is treated as a declaration that

a source library or script contains only r6rs-compatible

lexical constructs. It is otherwise treated as a comment

by the reader.

• An implementation may or may not signal an error when

it sees #!symbol, for any symbol symbol that is not

r6rs. Implementations are encouraged to use specific

#!-prefixed symbols as flags that subsequent input con-

tains extensions to the standard lexical syntax.

• All other lexical errors must be signaled, effectively rul-

ing out any implementation-dependent extensions unless

identified by a #!-prefixed symbol.

That is the semantics demanded by the R6RS standard rati-

fied in 2007.



Consider, for example, the R7RS datum label syntax

that allows reading and writing of circular data. This lex-

ical syntax is not described by the R6RS standard, so the

standard read and get-datum procedures provided by im-

plementations of the R6RS can support the syntax only as

an implementation-dependent extension that’s absolutely

forbidden by R6RS mustard unless it is preceded by an

implementation-specific #!-prefixed flag.

• Racket does not as yet offer an R7RS mode, and its R6RS

mode does not appear to allow the R7RS datum label

syntax under any circumstances.

• Sagittarius, Larceny, and Petit Larceny allow the R7RS

datum label syntax in R7RS modes but do not allow it in

R6RS mode unless it is preceded by an implementation-

specific flag such as #!r7rs.

• Petite Chez Scheme allows R7RS datum label syntax by

default but enforces strict R6RS lexical syntax when data

or code follow an #!r6rs flag.

• Vicare allows the R7RS datum label syntax even in data

or expressions that follow an #!r6rs flag.

As explained in section 9.1, those are the leading imple-

mentations of the R6RS currently available for Linux ma-

chines. Four of them (Racket, Sagittarius, Larceny, and Petit

Larceny) enforce R6RS mustard with respect to this particu-

lar lexical extension. The other two (Petite Chez and Vicare)

honor that absolute requirement in the breach.

3.2 Example: argument checking

R6RS Section 5.4 says implementations must check restric-

tions on the number of arguments passed to procedures

specified by the standard, must check other restrictions “to

the extent that it is reasonable, possible, and necessary”

to do so, and must raise an exception with condition type

&assertion whenever it detects a violation of an argument

restriction. These and other absolute requirements forbid

extension of R6RS procedures such as map, member, and

string->utf8 to accomodate the more general semantics

of those procedures as specified by the R7RS.

3.3 Example: syntax violations

R6RS Section 5.5 says implementations must detect syntax

violations, and must respond to syntax violations by rais-

ing a &syntax exception before execution of the top-level

program is allowed to begin. These are the absolute require-

ments that forbid interactive read/eval/print loops. They also

forbid extension of the define-record-type syntax to ac-

cept R7RS, SRFI 9, or SRFI 99 syntax, and forbid extension

of the syntax-rules and case syntaxes to accept new fea-

tures added by the R7RS.

3.4 Possible responses

The examples offered above show how R6RS mustard inter-

feres with interoperability between R6RS and R7RS code.

One possible response to these absolute requirements is

to regard the R6RS as a dead end, worthy of support only in

legacy modes.

Another possible response is to take R6RS absolute re-

quirements seriously, even when they interfere with inter-

operability. Programs that import R7RS and R6RS libraries

would have to rename all syntaxes and procedures whose

R6RS and R7RS specifications differ in even the smallest

of ways, just as R6RS programs have had to rename the

map, for-each, member, assoc, and fold-right proce-

dures when importing (rnrs base), (rnrs lists), and

(srfi :1 lists).

For Larceny we chose a third way, regarding many of the

R6RS’s absolute requirements as quaint customs that would

be more honored in the breach. When interoperability be-

tween R7RS/R6RS/R5RS code would be improved by ig-

noring an R6RS requirement, Larceny ignores the require-

ment.

With many technical standards, implementations that ig-

nore any of the standard’s absolute requirements would be

severely crippled or unusable. With the R6RS, however, im-

plementations that ignore the standard’s absolute require-

ments become more usable than implementations that take

those requirements seriously.

4. Compromises and Workarounds

As explained by Larceny’s user manual [13]:

Larceny is R6RS-compatible but not R6RS-con-

forming. When Larceny is said to support a feature of

the R6RS, that means the feature is present and will

behave as specified by the R6RS so long as no excep-

tion is raised or expected. Larceny does not always

raise the specific conditions specified by the R6RS,

and does not perform all of the checking for porta-

bility problems that is mandated by the R6RS. These

deviations do not affect the execution of production

code, and do not compromise Larceny’s traditional

safety.

This distinction between R6RS-compatible and R6RS-con-

forming foreshadowed compromises that would be needed

for convenient interoperation between R7RS, R6RS, and

R5RS libraries and programs.

Most incompatibilities between the R7RS and R6RS can

be made to disappear by adopting the more general seman-

tics specified by the R7RS while ignoring absolute require-

ments of the R6RS that forbid such extensions.

The R7RS explicitly allows extensions to its lexical syn-

tax and procedures, so implementations of the R7RS are free

to extend the read procedure to accept R6RS lexical syntax

as well as R7RS syntax. Larceny’s implementation of read

is described in a separate section below.

Although R6RS define-record-typehas little in com-

mon with define-record-type as specified by the R7RS,



SRFI 9, and SRFI 99, that syntactic incongruity made it easy

for Larceny’s define-record-type to accept code written

according to any of those standards.

The R6RS error procedure treats its first argument as a

description of the procedure reporting the error, and allows

that argument to be a string, a symbol, or #f; there must also

be a second argument, which must be a string. The R7RS and

SRFI 23 standards specify an error procedure that requires

its first argument to be a string, and treats it as an error

message. In Larceny, a single error procedure implements

both the R7RS and R6RS semantics by using the execution

mode and its arguments to guess whether it should behave as

specified by the R6RS or as specified by the R7RS and SRFI

23. The error procedure enforces R6RS semantics under

either of these circumstances:

• Larceny is running in --r6rs mode

• its first argument is not a string, and its second argument

is a string

Larceny’s default exception handler reports errors in a la-

conic format that should make sense even when the error

procedure guesses wrong.

One incompatibility between the R6RS and R7RS stan-

dards could not be resolved by generalizing a syntax or

procedure. Their specifications of bytevector-copy! are

dangerously incompatible because they disagree concern-

ing whether the first and third arguments are destination

or source of the copy. The (larceny r7r6) library that’s

imported by Larceny’s --r7r6 option renames the R6RS

procedure to r6rs:bytevector-copy!. Libraries and pro-

grams that import (rnrs bytevectors) directly get the

original spelling, of course, and must rename something

themselves if they also import (scheme base).

The R7RS specification of real? says “(real? z) is

true if and only if (zero? (imag-part z)) is true” but

gives an example saying (real? -2.5+0.0i) evaluates to

false. I believe the prose specification should have said this:

In implementations that do not provide the optional

(scheme complex) library, (real? z) is always

true. In implementations that do provide the library,

(real? z) is false if (zero? (imag-part z)) is

false, true if both (zero? (imag-part z)) and

(exact? (imag-part z)) are true, and may be true

whenever (zero? (imag-part z)) is true.

Without that repair, the R7RS prose is consistent with R5RS

but not with R6RS, while the R7RS examples are consistent

with R6RS but not with R5RS.

The R6RS semantics of real? was a carefully reasoned

improvement over the R5RS semantics, and experience with

the R6RS has shown that programmers doing numerical

work appreciate the improvement, while casual program-

mers seldom notice it. Larceny is consistent with the R7RS

examples, with the R6RS, and with the correction I sug-

gested above. A survey of other implementations, detailed

in the appendix, supports that correction.

5. Library Syntax

Larceny implemented the R6RS using Andre van Tonder’s

implementation of R6RS libraries and macros [27]. For

Larceny v0.98, we upgraded that component to process

R7RS libraries and programs as well as R6RS libraries and

programs. It now expands define-library and library

syntax into a common intermediate form, so there is no way

for client code to tell which syntax was used to define li-

braries it imports. Hence R7RS and R6RS libraries and pro-

grams are fully interoperable.

Any incompatibilities between define-library and

library must therefore be rooted in their own syntax and

semantics. Their syntaxes are obviously disjoint, so there is

no direct conflict between R7RS and R6RS library syntax.

On the other hand, the R7RS define-library syntax

allows unsigned integers to appear within library names such

as (srfi 1) and (srfi 1 lists). R6RS library syntax

does not allow those names.

Larceny enforces the R6RS prohibition of unsigned inte-

gers within the names of libraries defined by R6RS library

syntax, but ignores the R6RS absolute requirement that for-

bids importation of libraries with such names into an R6RS

library or program. This partial flouting of R6RS absolute

requirements may seem arbitrary, but it

• improves portability (by discouraging creation of R6RS

source libraries whose names would be rejected by other

implementations of the R6RS) and also

• improves interoperability (by allowing unrestricted im-

portation of R7RS and SRFI libraries that may not even

exist in other implementations of the R6RS).

SRFI 97 specifies a convention in which the numeric

part of a SRFI library name is preceded by a colon, as in

(srfi :1 lists) [9]. The R7RS standard rendered that

SRFI 97 convention obsolete outside of R6RS libraries and

programs.

Larceny now uses the R7RS convention, as in (srfi 1)

and (srfi 1 lists), to name the SRFI libraries it sup-

ports. For backward compatibility, Larceny continues to sup-

ply duplicate libraries that use the SRFI 97 naming con-

vention, as in (srfi :1) and (srfi :1 lists). For the

newer SRFI libraries (numbered above 101), Larceny sup-

ports only the R7RS naming convention. That decision can

be reconsidered if enough programmers tell us they are still

using the R6RS library syntax when writing new code.

The R7RS define-library syntax offers several ad-

vantages over the R6RS library syntax. R7RS include

and cond-expand facilities have already shown their worth,

and liberalized placement of import declarations works

well with cond-expand and read/eval/print loops.



The R6RS library syntax supports optional versioning,

but that feature never really caught on, partly because the

R6RS did not even suggest a file naming convention that

could accomodate its hierarchical versions. R6RS Section

7.1 implies the mapping from library names to library code

is implementation-dependent, and this implication becomes

more emphatic in R6RS Non-normative Appendixes E and

G [22]. That sanctions implementations such as Larceny in

which an R6RS library’s version is ignored.

The library syntax’s most apparent advantage over

define-library is explicit phasing of procedural macros.

The R6RS community now appears to favor implicit phas-

ing, which is allowed by the R6RS, so this advantage may

not be real [8]. Larceny v0.98 requires explicit phasing, but

that is likely to change in a future release.

6. Lexical Syntax

In most modes, Larceny normally recognizes R7RS lexi-

cal syntax together with most of the lexical syntax speci-

fied by the older R6RS, R5RS, and IEEE/ANSI standards.

In --r6rs mode, which tries to enforce most absolute re-

quirements of the R6RS, Larceny normally recognizes only

R6RS lexical syntax.

The lexical syntax allowed on a textual input port can be

altered by reading a #!r7rs, #!r6rs, #!r5rs, #!larceny,

#!fold-case, or #!no-fold-case flag from the port. The

#!fold-case and #!no-fold-case flags behave as spec-

ified by the R7RS. The other flags affect a set of port-

specific flag bits that determine whether the port allows

R7RS, R6RS, and Larceny weirdness (which is Larceny-

specific jargon for extensions to R5RS/IEEE/ANSI lexical

syntax). As required by the R6RS, the #!r6rs flag enables

R6RS weirdness while disabling R7RS and Larceny weird-

ness. The #!r7rs flag enables R7RS weirdness without dis-

abling other weirdness, and also enables case-sensitivity.

The #!larceny flag enables R7RS, R6RS, and Larceny

weirdness without disabling other weirdness; it too enables

case-sensitivity. The R5RS allows extensions to its lexical

syntax, so Larceny’s #!r5rs flag is equivalent to this se-

quence of flags:

#!r7rs #!larceny #!fold-case

The lexical syntax allowed on newly opened textual ports

is determined by a set of parameters that have been given

names such as read-r7rs-weirdness? even though they

affect output ports as well as input ports.

Bytevectors are written using R7RS syntax unless the

output port disallows R7RS weirdness and allows R6RS

weirdness, in which case R6RS syntax is used. Larceny’s

read procedure accepts both R7RS and R6RS bytevec-

tor syntax unless the input port disallows both R7RS and

Larceny weirdness, in which case only R6RS bytevector

syntax is accepted.

Symbols, strings, and characters are written using R7RS

syntax unless the output port disallows R7RS weirdness, in

which case R6RS syntax is used unless the port also disal-

lows R6RS weirdness, in which case characters that would

not be portable in context under R5RS rules are written using

inline hex escapes.

The R6RS does not allow its write and display proce-

dures to produce a finite representation of cyclic data struc-

tures that can be read reliably by the R6RS read proce-

dure, but does allow those procedures to go into an infinite

loop when asked to print cyclic data. The R7RS requires

write to use datum labels when printing cyclic data, as in

#1=(0 . #1#), but forbids datum labels when there are no

cycles. Larceny’s write and display procedures therefore

produce datum labels only when their R6RS behavior is es-

sentially unspecified, which is a rare example of interoper-

ability made possible by underspecification in the R6RS in-

stead of the R7RS.

Larceny’s read procedure is implemented by a machine-

generated finite state machine and strong LL(1) parser that

accept the union of R7RS, R6RS, R5RS, and Larceny-

specific syntax. Action routines called by the state machine

and parser perform all of the checking necessary to deter-

mine whether the syntax is allowed by the input port. The

complexity of these checks makes it impractical for Larceny

to allow easy customization of its read procedure.

7. Unicode

Larceny uses the R6RS reference implementation of Uni-

code written by Mike Sperber and myself, upgraded to Uni-

code 7.0 [19, 25]. A trivial conversion of this reference im-

plementation to use R7RS library syntax and R7RS libraries

has made the R6RS (rnrs unicode) library available to

any implementation of the R7RS that can represent Unicode

characters and strings [4, 23].

The R6RS requires implementations to support Unicode

characters and strings, but the R7RS standard made that

optional.

I tested ten implementations of the R7RS: the eight listed

in section 9.1, plus Picrin and Husk Scheme. Of those ten,

Picrin is the only one that cannot represent arbitrary Unicode

characters. Chicken can represent all Unicode characters but

defaults to strings limited to the Latin-1 subset of Unicode;

I am told that Chicken can also support full Unicode strings.

The other implementations support Unicode strings as well

as characters.

The R7RS (scheme char) library is almost a sub-

set of the R6RS (rnrs unicode) library, adding only

digit-value while omitting char-general-category,

three procedures that implement title case, and four proce-

dures that convert strings to Unicode normalization forms

NFC, NFD, NFKC, or NFKD. The R6RS and R7RS specifi-

cations of char-numeric? look slightly different, but that’s

a minor mistake in the R6RS that was corrected in R7RS.



The R6RS requires string-downcase to handle Greek

sigma as specified by Unicode Standard Annex #29 [24].

This implies detection of word boundaries to decide whether

to use final or non-final sigma. Even so, the Unicode spec-

ification does not handle all Greek text correctly, because

there are situations that cannot be distinguished without

knowing what the text means. The R7RS explicitly allows

string-downcase to convert every upper-case sigma to a

non-final sigma. Of the ten R7RS implementations tested,

Gauche, Kawa, native Larceny, Petit Larceny, and Sagittar-

ius appear to handle Greek sigma as specified by the R6RS

and Unicode 7.0.

R6RS Section 11.12 says implementors should make

string-ref run in constant time, and it does in all six

implementations of the R6RS I tested. The R7RS standard

says “There is no requirement for this procedure to execute

in constant time.” Of the eight R7RS systems tested that nor-

mally support Unicode strings, only Foment, Larceny, Petit

Larceny, and Sagittarius define a string-ref that runs in

constant time.

Although the Scheme standards have done an excellent

job of specifying a string data type that can accomodate Uni-

code without assuming any particular representation or char-

acter set beyond ASCII, mutable strings of fixed length are

now a local pessimum in the design space. Scheme Work-

ing Group 2 is therefore considering the addition of a new

data type for immutable sequences of Unicode characters

[6]. This new data type would provide efficient sequential

access in both directions, efficient extraction of substrings,

efficient searching, and space efficiency approaching that of

UTF-8. What’s more, this new data type could be imple-

mented so random accesses run in O(1) time.

8. Assessment

Interoperability between R7RS and R6RS code is illustrated

by Larceny’s use of R6RS standard libraries to implement

most of the R7RS libraries, and by the mix of R7RS/R6RS

libraries Larceny uses to implement more than 50 SRFI

libraries.

Interoperability is also demonstrated by using Larceny’s

--r7rs and --r6rsmodes to run conformance tests, bench-

marks, and tests of SRFI libraries.

8.1 Racket’s R6RS tests

Racket’s implementation of the R6RS includes a test suite

that runs 8897 tests of conformance to the R6RS standard.

Petite Chez Scheme appears to be the only free implemen-

tation of the R6RS for Linux that passes all of those tests.

Racket v6.1.1 fails three tests; two of those failures involve

Unicode title case, and are caused by not implementing Uni-

code Standard Annex #29 [15]. Sagittarius version 0.6.4 fails

three tests, including one in which it detects a violation of

the letrec restriction at compile time instead of run time

and then refuses to run the program. (R6RS Section 11.4.6

says implementations must detect letrec violations during

evaluation of the expression, which implies run time.) Vicare

v0.3d7 fails six tests, including two in which it detects vio-

lations of the letrec restriction at compile time and refuses

to run the program.

In --r6rs mode, native Larceny and Petit Larceny both

fail one test by allowing it to run to completion despite

a violation of the letrec restriction that goes undetected

because the variables involved in the violation are not used.

In --r7rs mode, native Larceny and Petit Larceny both fail

a second test when (log 0) throws an exception whose

R7RS-conforming condition object doesn’t belong to the

specific condition class demanded by the R6RS.

So Larceny is reasonably compatible with the R6RS even

when operating in --r7rs mode.

8.2 Larceny’s R7RS tests

Using Racket’s R6RS tests as a starting point, I imple-

mented a test suite that (as of this writing) runs 2156 tests

of conformance to the R7RS standard. That number is a bit

misleading, because many of those tests would have been

split into several distinct tests had they been written in the

Racket style. Comparing lines of code, our R7RS test suite

is slightly larger than Racket’s R6RS test suite.

In --r7rs mode, native Larceny and Petit Larceny both

fail one test because they have not yet implemented the

generalized ellipsis form of syntax-rules.

When the R7RS tests are run in Larceny’s --r6rs mode,

that mode’s strict enforcement of R6RS syntax rejects four

sections of the R7RS test suite that use R7RS syntax for

bytevectors or strings. When an #!r7rs flag is added at the

beginning of those four files, Larceny passes 2117 of the

tests while failing 39:

• 1 test failed as it did in R7RS mode.

• 1 test failed because the error procedure used R6RS

semantics.

• 11 tests of (scheme write) failed because R6RS syn-

tax was written.

• 13 tests of (scheme read) failed because R7RS data

were read from a string that did not contain an #!r7rs

flag.

• 10 tests of (scheme repl) failed.

• 3 tests of (scheme load) failed.

These failures show how strict enforcement of R6RS mus-

tard interferes with interoperability. Smooth interopera-

tion between R7RS and R6RS code is achieved only by

Larceny’s more liberal R7RS modes.

8.3 Benchmarks

We have collected 68 R6RS benchmarks and translated 57

of them into R7RS benchmarks [1]. The untranslated bench-



marks test features such as hashtables or sorting routines that

have no counterpart in R7RS.

In --r6rs mode, native Larceny runs all of the R6RS

benchmarks successfully.

In --r7rs mode, Larceny should be able to run all R6RS

benchmarks but does not. In --r7rs mode, Larceny returns

an incorrect result for the R6RS read0 benchmark because it

accepts R7RS-legal symbols that begin with the @ character

even after an #!r6rs flag has been read from the input port.

This is a bug in the read procedure’s enforcement of R6RS

syntax, discovered only during preparation of this paper; this

bug will be fixed in Larceny v0.99, which should be released

by the end of August 2015.

In --r7rs mode, native Larceny runs all of the R7RS

benchmarks successfully.

Even in --r6rs mode, native Larceny runs all of the

R7RS benchmarks successfully. They were, after all, trans-

lated from R6RS code without making any special effort to

introduce R7RS-specific syntax or features.

8.4 SRFI tests

The source distribution of Larceny contains 49 R7RS pro-

grams that test SRFI libraries whose names follow the R7RS

convention and another 45 R6RS programs that test SRFI li-

braries whose names follow the SRFI 97 (R6RS) convention.

All of the R6RS test programs can be run in either

--r7rs or --r6rs mode.

All but one of the R7RS test programs can be run in

either --r7rs or --r6rs mode. The R7RS test program

for (srfi 115 regexp) contains an R7RS symbol syntax

that’s rejected by the --r6rs mode’s strict enforcement of

R6RS syntax.

9. Portability

Portability of R7RS or R6RS code is determined as much or

more by the available implementations as by the standards

themselves.

9.1 Implementations

In May 2015, I was able to benchmark eight free implemen-

tations of the R7RS on the Linux machine we use for bench-

marking:

• Chibi Scheme 0.7.3

• Chicken Scheme Version 4.9.0.1

• Foment Scheme 0.4 (debug)

• Gauche version 0.9.4

• Kawa 2.0

• Larceny v0.98

• Petit Larceny v0.98

• Sagittarius 0.6.4

I was able to install three more implementations that claim to

implement at least part of R7RS, but was unable to get them

to run enough of the R7RS benchmarks to make benchmark-

ing worthwhile.

I was able to benchmark six free implementations of the

R6RS on that same Linux machine:

• Larceny v0.98

• Petit Larceny v0.98

• Petite Chez Version 8.4

• Racket v6.1.1

• Sagittarius 0.6.4

• Vicare Scheme version 0.3d7, 64-bit

I tried to install several other implementations of the R6RS

without success; most had not been updated for several

years. Vicare is a fork of Ikarus, which I did not try to install

because it is no longer being maintained.

As should be expected, R6RS and R6RS/R7RS systems

tend to be more mature than R7RS-only systems. Half of the

six R6RS systems were able to run all of Larceny’s R6RS

benchmarks, and the other half failed on only one bench-

mark. Chibi, native Larceny, and Sagittarius were the only

R7RS systems able to run all of Larceny’s R7RS bench-

marks, with two others (Chicken and Petit Larceny) able to

run all but one benchmark [3].1

The R6RS systems also tended to run faster. Taking the

geometric mean over all benchmarks, Petit Larceny was the

third slowest implementation of the R6RS but the second

fastest implementation of R7RS.

I am, however, impressed by the promise of the R7RS

implementations.

9.2 File naming conventions

The R7RS and R6RS standards do not specify any mapping

from library names to files or other locations at which the

code for a library might be found. R6RS non-normative

appendix E emphasizes the arbitrariness of such mappings.

R7RS Section 5.1 meekly suggests

Implementations which store libraries in files should

document the mapping from the name of a library to

its location in the file system.

Fortunately, de facto standards have been emerging.

An R6RS library named (rnrs io simple (6)) is

typically found within a file named rnrs/io/simple.sls.

(The version is typically ignored. On Windows systems,

backslashes would be used instead of forward slashes.) An

R7RS library named (srfi 113 sets) is typically found

within a file named srfi/113/sets.sld. That file may

consist of a define-library form that specifies the exports

and imports but includes its definitions from another file. If

1 The next release of Kawa is expected to run all of the R7RS benchmarks.



(define-library (baz)

(export x y)

(import (scheme base))

(begin

(define x 10)

(define y (+ x x))))

Figure 1. An R7RS library in a file named baz.sld.

(import (scheme base)

(scheme write)

(scheme process-context)

(baz))

(write (list x y))

(newline)

(exit)

Figure 2. An R7RS program in a file named pgm.

(import (scheme base)

(scheme load)

(scheme write)

(scheme process-context))

(load "baz.sld")

(import (baz))

(write (list x y))

(newline)

(exit)

Figure 3. A similar R7RS program in a file named pgm2.

so, the included file is typically named sets.body.scm and

placed within the same directory as the sets.sld file.

For the (include "sets.body.scm") convention to

work, implementations must search for the included file

within the directory of the including file. Chicken, Gauche,

Kawa, Larceny, and Petit Larceny do so, and the develop-

ment version of Foment 0.5 is said to do so as well.

9.3 Auto-loading conventions

The R7RS standard does not say whether library files must

be loaded explicitly before the libraries they contain can be

imported. This underspecification is impeding the portability

of R7RS programs.

Some implementations of the R7RS apparently require

library files to be loaded (using the load procedure of

(scheme load)) before the libraries they contain can be

imported.

Other implementations of the R7RS load library files

automatically when the libraries they contain are imported,

using file naming conventions and a search path to locate

those libraries. All tested implementations of the R6RS use

this approach as well.

Consider, for example, the baz library of Figure 1 and

the R7RS program shown in Figure 2. If the baz.sld and

pgm files are located within the current working directory of

a Linux machine, then seven of the ten implementations I

tested will run the program using command lines shown in

the appendix.

If the closely related program of Figure 3 is contained

within a file named pgm2 in that same directory, then it too

can be run by seven of the ten implementations. (For details,

see the appendix.)

Of the implementations tested, Foment, native Larceny,

Petit Larceny, and Sagittarius appear to be the only ones that

can run both versions of the program without changing the

file names or source code. The portability of R7RS programs

will be enhanced if implementors follow their example.

9.4 Lightweight libraries improve modularity

If baz.sld and pgm are concatenated into a single file,

then Chicken, Foment, Gauche, Kawa, native Larceny, Petit

Larceny, and Sagittarius will run the program. This appears

to be the most portable way to distribute a complete R7RS

program that defines its own libraries.

That’s a substantial shift from R6RS practice. Native

Larceny and Petit Larceny seem to be the only implementa-

tions that allow an R6RS program’s libraries to be defined

within the same file that contains the top-level program it-

self.

The R6RS editors appear to have thought of R6RS li-

braries as a mechanism for distributing code that would

probably have to be translated into implementation-specific

module systems and go through a fairly heavyweight instal-

lation process, as with Racket collections, before they could

be imported into a program [14].

As can be seen in reference implementations of recent

SRFIs, the R7RS community thinks of R7RS libraries as a

lightweight and portable tool for constructing more modular

programs. I believe that’s progress.

9.5 R6RS standard libraries

It’s all very well to say the R6RS is a proper subset of R7RS

as implemented by Larceny, but how easy would it be to

make that happen in other implementations of the R7RS?

Most of the standard R6RS libraries have been ported to

R7RS and can be downloaded from snow-fort.org:

(r6rs base)

(r6rs unicode)

(r6rs bytevectors)

(r6rs lists)

(r6rs sorting)

(r6rs control)

(r6rs exceptions)

(r6rs files)

(r6rs programs)

(r6rs arithmetic fixnums)



(r6rs hashtables)

(r6rs enums)

(r6rs eval)

(r6rs mutable-pairs)

(r6rs mutable-strings)

(r6rs r5rs)

These correspond to the (rnrs *) libraries of R6RS, but

have been renamed to avoid conflict with the original R6RS

libraries as provided by R6RS/R7RS implementations such

as Sagittarius and Larceny. These libraries use cond-expand

to import the corresponding (rnrs *) library if it is avail-

able, which guarantees full interoperability with any of the

standard R6RS libraries that may be provided by implemen-

tations of the R7RS.

If the corresponding (rnrs *) library is not avail-

able, cond-expand will include portable code that im-

plements the library on top of R7RS standard libraries.

The portable implementation of (r6rs base) implements

identifier-syntax as a stub that generates a syntax error

when used. The portable implementation of hashtables re-

lies on (rnrs hashtables) if that library is available, or

builds upon (srfi 69) if that library is available, or builds

upon a portable implementation of (srfi 69) if nothing

better is available. The (r6rs *) libraries listed above are

otherwise equivalent to their (rnrs *) counterparts.

Implementation of the (r6rs arithmetic flonums)

and (r6rs arithmetic bitwise) libraries should be

straightforward. The (r6rs io simple) library is more

interesting because it should support both R6RS and R7RS

lexical syntax.

The following components of the R6RS are hard to im-

plement portably atop R7RS without sacrificing interoper-

ability with corresponding components of the R7RS imple-

mentation:

• R6RS lexical syntax

• R6RS library syntax

• the R6RS record system

• the (rnrs conditions) library

• parts of the (rnrs io ports) library

• the (rnrs syntax-case) library

R6RS libraries and programs may contain non-R7RS

syntax for bytevectors, identifiers, strings, and even a few

characters. Translation from R6RS to R7RS lexical syntax

is trivial, but the need for translation will interfere with inter-

operability in implementations that reject non-R7RS syntax.

Some implementations of the R7RS may hard-wire their

(scheme read) and (scheme write) libraries so tightly

they can’t be replaced, which will force code that also im-

ports (rnrs io simple) or (r6rs io simple) to re-

name one of the two versions of the read and write proce-

dures.

Translation from library to define-library syntax

is trivial, so the R6RS library syntax is the easiest of

the listed components for R7RS systems to support na-

tively. Without built-in support, the need for a separate

translation step degrades interoperability. The R7RS stan-

dard does not allow define-library forms as the output

of macro expansion. In seven of the ten implementations

tested, library can be defined as a hygienic macro that ex-

pands into code that uses eval to evaluate the corresponding

define-library form in the interaction-environment;

three of those seven already support library natively.

The R7RS (large) standard will probably include a record

system similar to SRFI 99, which can implement the pro-

cedural and inspection layers of R6RS records with full in-

teroperability between those layers and the R7RS, SRFI 9,

and SRFI 99 record systems. R7RS (large) is also likely to

include a macro system capable of implementing the R6RS

syntactic layer on top of SRFI 99.

Implementing the (rnrs conditions) library on top

of SRFI 99 records is straightforward, but integrating its

condition objects into an R7RS system’s native exception

system cannot be done portably.

The (rnrs io ports) library includes several individ-

ual features that sounded good in isolation but do not com-

bine well. Unsurprisingly, those are the features that cannot

be implemented portably on top of the R7RS i/o system:

• port positions

• custom ports

• bidirectional input/output ports

If these problematic features are dropped, then the rest of the

R6RS i/o system can be approximated more or less crudely

in R7RS. To emphasize the crudity of the approximation,

consider the R6RS transcoded-port procedure. In R7RS

systems that don’t distinguish between binary and textual

ports, this procedure can just return its first argument when-

ever its second argument is the native transcoder. Output

ports are hardly ever passed to transcoded-port, so an im-

plementation restriction that rejects any attempt to add non-

native transcoding to a binary output port will seldom cause

trouble. If conversions from interactive binary input ports to

textual are also limited to native transcoding, then non-native

transcoders will be allowed only when the first argument cor-

responds to a bytevector or file, so the transcoded-port

procedure can copy all remaining bytes from the binary port

into a bytevector or temporary file, which it can then open as

a textual port using the specified transcoder.

The (rnrs syntax-case) library might be approxi-

mated using an eval trick as described above for R6RS

library syntax, but that would be unpleasant even if it

works. It’s more practical to wait for R7RS (large), which

is expected to include a macro system with enough power

to approximate syntax-case. Larceny, for example, imple-



ments (rnrs syntax-case)on top of an explicit renaming

macro system, as outlined by SRFI 72 [26, 27].

10. Conclusion

Implementations of the R7RS can achieve near-perfect back-

ward compatibility with the R6RS.

R7RS programmers can derive some benefit from R6RS

libraries even in systems that don’t support the R6RS stan-

dard. Most R6RS standard libraries have been implemented

on top of R7RS [4]. Some of the R6RS standard libraries that

can’t be implemented in R7RS (small) are likely to become

implementable in the anticipated R7RS (large) standard.

R7RS (large) is also expected to include standard libraries

that go well beyond those provided by the R6RS.

The usefulness, portability, and interoperability of R7RS

code are more likely to be limited by the availability and

quality of implementations, and by practical issues such as

file naming and auto-loading conventions, than by incompat-

ibilities between the R7RS and R6RS standards.

A. Appendix

The program in Figure 2 can be run in Chibi Scheme, Fo-

ment, Husk Scheme, native Larceny, Petit Larceny, and

Sagittarius by incanting

chibi-scheme -I . < pgm

foment pgm

huski pgm

larceny --r7rs --path . --program pgm

sagittarius -r7 -L . pgm

That program can be run in Gauche by copying baz.sld to

a file named baz and incanting

gosh -r7 -I . -l pgm

The program in Figure 3 can be run in Chicken, Foment,

Gauche, Kawa, and native Larceny or Petit Larceny by in-

canting

csi -require-extension r7rs pgm2

foment pgm2

gosh -r7 -I . pgm2

kawa --r7rs -f pgm2

larceny --r7rs < pgm2

sagittarius -r7 pgm2

The --path and -L options of Larceny and Sagittarius can

be omitted here because pgm2 loads the library file explicitly.

For some reason, Gauche must be given the analogous -I

option even with pgm2.

The incantation shown for Chicken uses the csi inter-

preter because that fits on a single line. When benchmarking,

I ran Chicken’s compiler (csc) with five command-line op-

tions to enable various optimizations; running the compiled

program then becomes a separate step.

As noted at the end of Section 4, the R7RS prose specifi-

cation of real? refers to the imag-part procedure, which is

available only in implementations that provide the optional

(scheme complex) library. One of the ten tested imple-

mentations of the R7RS does not support that library, but

all of the nine mentioned in this appendix do provide it. Six

of the nine—including Chibi Scheme, which was written by

the chair of Working Group 1 and served as a reference im-

plementation for the R7RS standard—agree with the R7RS

by saying (real? -2.5+0.0i) evaluates to false. Of the

three implementations that disagree with this R7RS exam-

ple, one (Husk Scheme) violates R7RS semantics by refus-

ing to compute (imag-part 2.5), so it also violates the

R7RS prose specification of the real? procedure. Two im-

plementations behave as specified by the R7RS prose. All

but one of the ten implementations behave as specified by

my suggested repair of that prose, as would the outlier (Husk

Scheme) if its imag-part bug were fixed.

Acknowledgments

I am gratified by the assistance given me by implementors

of the R6RS and R7RS systems named here. We aren’t all

working on the same implementation, but we are certainly

working to implement the same or similar language(s), and

have much to offer one another.

I am also grateful to the editors of the R6RS and R7RS

documents, who made enormous progress while creating

standards that allow backward compatibility and interoper-

ability.

John Cowan, an editor of the R7RS standard and chair

of Working Group 2, improved this paper by commenting

upon its first two drafts. He is of course not responsible for

my opinions and outright mistakes, nor is he responsible for

my speculations concerning the R7RS (large) standard being

developed by Working Group 2.

I believe the program committee’s suggestions helped

to improve this paper. I do not know whether the program

committee shares my belief.

References

[1] W. D. Clinger. Larceny home page. URL

www.larcenists.org.

[2] W. D. Clinger. r6rs-editors email archives, May 2006.

URL http://www.r6rs.org/r6rs-editors/2006-May/

001251.html.

[3] W. D. Clinger. Larceny benchmarks, Mar 2015. URL

http:www.larcenists.org/benchmarks2015.html.

[4] W. D. Clinger and T. U. Bayirli/Kammer. R6RS standard li-

braries for R7RS systems, 2015. URL snow-fort.org/pkg.

[5] J. Cowan. PlebisciteObjections. URL

http://trac.sacrideo.us/wg/wiki/

PlebisciteObjections.

[6] J. Cowan. Character span library, 2015.

URL http://trac.sacrideo.us/wg/wiki/

CharacterSpansCowan.



[7] K. Dybvig, W. Clinger, M. Flatt, M. Sperber, and

A. van Straaten. R6RS status report, 2006. URL

www.schemers.org/Documents/Standards/Charter/

status-jun-2006/status-jun06.html.

[8] A. Ghuloum. The portable R6RS li-

brary and syntax-case system, 2008. URL

https://launchpad.net/r6rs-libraries/.

[9] D. V. Horn. SRFI libraries, 2008. URL

http://srfi.schemers.org/srfi-97/srfi-97.html.

[10] Internet Engineering Task Force. IETF RFC 2119: Key words

for use in RFCs to indicate requirement levels, Mar 1999.

URL http://www.ietf.org/rfc/rfc2119.txt.

[11] T. Kato. Implementing R7RS on an R6RS Scheme system. In

Scheme and Functional Programming Workshop, Nov 2014.

URL http://www.schemeworkshop.org/2014/.

[12] R. Kelsey, W. Clinger, and J. Rees. Revised5 Report on

the Algorithmic Language Scheme. Journal of Higher

Order and Symbolic Computation, 11(1):7–105, 1998. URL

http://www.scheme-reports.org/.

[13] Larcenists. Larceny user manual. URL

http://www.larcenists.org/doc.html.

[14] Racketeers. Installing libraries. URL

http://docs.racket-lang.org/r6rs/

Installing Libraries.html.

[15] Racketeers. R6RS conformance. URL

http://docs.racket-lang.org/r6rs/conformance.html.

[16] W. Shakespeare. Hamlet. 1602. Act 1, scene 4.

[17] A. Shinn, J. Cowan, and A. A. Gleckler. Revised7 Report

on the Algorithmic Language Scheme. 2013. URL

http://www.scheme-reports.org/.

[18] M. Sperber. Revised6 Report on the Algorithmic Language

Scheme — Rationale. 2007. URL http://www.r6rs.org/.

[19] M. Sperber and W. D. Clinger. Unicode library, 2007. URL

https://github.com/larcenists/larceny/tree/

master/tools/Unicode/r6rs-unicode.

[20] M. Sperber, R. K. Dybvig, M. Flatt, and A. van

Straaten. Revised5.92 Report on the Algorithmic Lan-

guage Scheme — Standard Libraries. Jan. 2007. URL

http://www.r6rs.org/history.html.

[21] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten.

Revised6 Report on the Algorithmic Language Scheme.

Journal of Functional Programming, 19(S1):1–301, 2007.

URL http://www.r6rs.org/.

[22] M. Sperber, R. K. Dybvig, M. Flatt, and A. van

Straaten. Revised6 Report on the Algorithmic Language

Scheme — Non-Normative Appendixes. 2007. URL

http://www.r6rs.org/.

[23] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten.

Revised6 Report on the Algorithmic Language Scheme —

Standard Libraries. 2007. URL http://www.r6rs.org/.

[24] Unicode Consortium. Unicode Standard Annex #29, 2014.

URL http://www.unicode.org/reports/tr29/.

[25] Unicode Consortium. The Unicode Standard, 2014. URL

http://unicode.org/.

[26] A. van Tonder. Hygienic macros, 2005. URL

http://srfi.schemers.org/srfi-72/srfi-72.html.

[27] A. van Tonder. R6RS libraries and macros, 2007. URL

http://www.het.brown.edu/people/andre/macros/.


