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Cross-language interoperability is a desirable feature of language implementations. We present such an
integration between the Gambit Scheme implementation and the CPython Python implementation. Our work
combines a syntactic interface relying on a custom parser to facilitate writing Python expressions directly in a
Scheme program, as well as a low-level integration typical of other Foreign Function Interfaces (FFI). Our FFI
uses a Foreign Procedure Call (FPC) mechanism which bridges the Gambit and CPython threading models.
This work enables the use of Python packages from the Python Package Index (PyPI) from Gambit Scheme,
opening a world of mature Python libraries to Scheme developers.
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1 INTRODUCTION
The Scheme programming language, despite it being one of the oldest programming languages
still in use, has a comparatively limited user base relative to younger languages such as JavaScript
and Python. According to various surveys and metrics Python is one of, if not the most used
programming language [1, 6, 17]. It is generally considered to be very approachable by non-
programmers. A testament to its popularity is the number of Python libraries available through the
Python Package Index (PyPI) [13], of which there are almost 400,000 as of August 2022. Researchers
and practicioners in various fields can find a lot of software to work with in the Python ecosystem.
Packages are available for domains such as computational social science [9], quantitative finance,
numerical methods, 3D graphics, game development, network packet manipulation, machine
learning or web development among many others. Furthermore, many packages are high quality
and are actively maintained.

Scheme has not benefited from such large-scale adoption and has fewer easily available libraries.
A cursory count of those offered by various implementations and package managers1 arrives at
a little over 3100 libraries. The number of Scheme libraries is orders of magnitude lower than
what is available in Python. In Scheme, the gap between language extensions and libraries is filled
by Scheme Requests for Implementation (SRFIs). However these are mostly concerned with the
language itself and not any particular domain-specific libraries. While native Scheme libraries are
desirable, making use of existing libraries — especially high quality, well maintained ones — is of
great practical interest.

To interface with C libraries, Scheme implementations often offer a C Foreign Function Interface
(FFI). Building upon our prior experience with interfacing Scheme with JavaScript, we present an FFI
between Gambit Scheme and CPython, the canonical and most widely used Python implementation.
Our work relies on a tight integration between the low-level CPython C API and Gambit Scheme
as well as a high-level syntactic interface leveraging Gambit’s Scheme Infix eXtension parser (SIX)
to dynamically generate Python expressions. This combination offers programmers a versatile
programming environment. In addition, developers can import Python libraries directly from the
1We counted libraries available for Gambit, Gerbil, Racket and Chicken as well as from Snow, Akku and Scheme Spheres.
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Scheme REPL. This means that instead of writingM FFI wrappers forM C libraries, we write one
general FFI and gain access to all the libraries in the Python ecosystem, a significant advantage.

We hope this to be beneficial and interesting to Scheme programmers in general. We also wish to
facilitate the adoption of Scheme by interested Python programmers who could bring along their
favorite Python packages to get productive more quickly.

2 LOW-LEVEL INTERFACE
CPython’s C API allows programmers to write extension modules for the language, or embed the
CPython interpreter inside another program. We make use of CPython’s C API through Gambit’s
C interface, which is the standard FFI for interfacing with C code. The C API may change across
minor releases of CPython but we make use of the more stable parts and we have tested our FFI
with versions 3.7 through 3.10.

In order to offer an efficient, flexible and robust FFI, many apects must be taken into consideration.
Of great importance are the memory management models and the threading models of both
implementations. The mapping of objects and their conversions have to be handled to both respect
each Virtual Machine’s (VM) memory management model as well as make object sharing as
transparent as possible to simplify using the FFI. A low-level interface to Python can be useful for
customization and some use-cases so it is important to expose it to the programmer in addition to
the high-level interface that we discuss in Section 3.

2.1 Memory Management
A crucial aspect of handling Python objects from Scheme and vice versa is memory management.
The CPython runtime uses reference counting to track object liveness, whereas the Gambit Scheme
implementation uses a hybrid compacting GC.

A CPython object, which has the type PyObject* in C, can be referenced from Gambit Scheme
using the general purpose Gambit Scheme foreign object, a cell containing a C pointer (in this
specific case of type PyObject*) and a Scheme symbol tag indicating that foreign object’s type
which is used for run time type checking. The tag is typically PyObject* but a more precise tag is
used when the specific Python type is know, such as PyObject*/int for a Python int object. For
example, the CPython C API function PyList_New can be called from Schemewith (PyList_New 5)
and this returns a Python 5 element list wrapped in the foreign object with tag PyObject*/list
that prints using the format #<PyObject*/list #2 0x102e63780>. Each foreign object also has
a pointer to a C function that is called when the Gambit Garbage Collector (GC) detects that this
object is no longer reachable. For the foreign objects referring to Python objects the function
simply calls Py_DECREF on the PyObject* pointer to let the CPython memory manager know
that there is no longer a reference from the Scheme heap to this Python object. This balances the
Py_INCREF that is performed when the foreign object is created.

Gambit Scheme objects can be referenced from CPython by using the CPython general purpose
Capsule object, which is a cell containing a C pointer analogous to a Gambit foreign object.
The C pointer references a Gambit RC object, which is a C structure containing a Scheme object
reference and arbitrary other bytes not visited by the Gambit GC (in this specific use no other
bytes are needed). RC objects have a reference count and are allocated with the Gambit runtime
___alloc_rc C function which is functionally similar to the standard C malloc function except
for the managed data slot containing a Scheme object reference. Our FFI defines the Python class
SchemeObject to wrap the Capsule object and define a destructor as shown in Listing 1. By defining
the SchemeObject class as a subclass of the BaseException class we allow Scheme objects to be
used as exceptions on the Python side. When the CPython GC reclaims a SchemeObject object the
destructor is called and this will decrement the reference count of the RC object using the Gambit
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1 class SchemeObject(BaseException):
2 def __init__(self, obj_capsule):
3 self.obj_capsule = obj_capsule
4 def __del__(self):
5 _pfpc.free(self.obj_capsule)

Listing 1. Implementation of the SchemeObject Python class.

runtime ___release_rc C function. If this was the only remaining reference then the Scheme
object referenced by the data slot no longer counts as a garbage collection root.

2.2 Threading
While both CPython and Gambit Scheme support concurrency through threads, their implementa-
tion models are different. Gambit Scheme supports concurrency using lightweight threads that can
be created with the make-thread and thread procedures. In the default Gambit configuration these
threads are time sliced on a single Operating System (OS) thread, but there is also an experimental
support for multi-core execution that will eventually become the norm and that we want to plan
for adequately in this work. Concurrency in CPython is achieved in multiple ways. The traditional
way is with threads created with the threading module. Recent versions of CPython also support
coroutines created by the async def keywords, and executed using the await keyword, and also
generators (yield statement).

The Gambit runtime system for the C target supports multithreading as defined in SRFI 18 and
21. Scheme code is executed by a processor which is an abstraction of a physical processor typically
mapped to an OS thread but that could also be mapped to a physical CPU core when running on
bare metal. Gambit can be configured to use a single processor (the default) or multiple processors.
Each processor runs a thread scheduler that maintains a queue of runnable Scheme threads on that
processor and that time multiplexes their execution. Scheme threads are moved between processors
to balance the load. The scheduler is implemented in Scheme by using first-class continuations
to suspend and resume the execution of threads. To simplify the implementation of tail calls and
continuations the Gambit runtime system manages a stack of Scheme continuation frames per
processor that is separate from the C stack frames.

The consequence of this implementation is that there is not a one to one correspondence between
Scheme threads and OS threads. On the other hand, the CPython implementation does have a one to
one correspondence between Python threads and OS threads. For performance reasons, the Gambit
runtime API, structures and memory manager have been designed so that only the processors
(OS threads) that are created for that Gambit VM can execute Scheme code and participate in
memory management and garbage collection. This leads to the following design issue concerning
the threading models. A newly created Python thread cannot directly execute Scheme code by using
Gambit’s C interface, nor even allocate Scheme objects, because the thread does not correspond
to one of the Gambit VM’s processors. CPython’s C API is more forgiving because the system
has a Global Interpreter Lock (GIL) that must be acquired to perform most operations such as
allocating and accessing Python objects. When the GIL is held by an OS thread, no other OS thread
can call the C API. This is detrimental to Python thread concurrency but it does have the virtue of
simplifying usage of the C API and our FFI makes use of this. Consequently there is an asymmetry:
CPython’s C API can be called from Scheme (by making use of the GIL), but for the most part the



4 Bélanger and Feeley

Gambit runtime functions can’t be called from Python threads. The solution to this problem and its
impact on threading is explained in Section 2.3.3.

2.3 Mapping of Types
Inspired by our previous work with interfacing Scheme with JavaScript [8], we have chosen a
general purpose mapping between Scheme and Python objects that is intuitive and practical. This
mapping is implemented by the (PyObject*->object python-object) and (object->PyObject*
scheme-object) procedures that are available to the programmer. Bidirectional mappings are
favoured whenever possible so that an object round-trips to the same value (not eq? in general).
For example, (object->PyObject* 42) returns a foreign object referring to the Python integer
42, and (PyObject*->object (object->PyObject* 42)) returns 42. Our FFI makes use of this
mapping for the automatic conversions of the high-level layer, as explained in Section 3.

Figure 1 lists the various conversions between Scheme and Python objects implemented by these
procedures. Arrows indicate unidirectional or bidirectional mappings.

____Scheme____ _______Python_______
#!void <=> None
boolean #f/#t <=> bool False/True
fixnum 42 <=> int 42
bignum 123... <=> int 123...
flonum 42.5 <=> float 42.5
cpxnum 1.2+3.4i <=> complex 1.2+3.4j
ratnum 2/3 <=> Fraction(2, 3)
() <=> list []
list (1 2 3) <=> list [1, 2, 3]
pair (1 . 2) => list [1, 2]
vector #(1 2) <=> tuple (1, 2)
u8vector #u8(...) <=> bytes
s8vector #s8(...) => bytes
string "abc" <=> str "abc"
symbol abc => str "abc"
char #\a => int 97
table <=> dict
foreign <= foreign(python_obj)
(scheme scheme-obj) => SchemeObject
procedure <=> function

<= callable
<= builtin_function_or_method
<= method
<= method_descriptor

Fig. 1. Scheme types and their mapping to Python types in Gambit’s Python FFI.

2.3.1 Simple objects and types. Bidirectional mappings are implemented for as many builtin types
as possible. The Python None object is mapped to the Gambit #!void object which plays a similar
role in Scheme. Python booleans True and False are mapped to #t and #f. The Python number
types int, float, complex, and Fraction are mapped to Scheme exact integers (fixnum or bignum),
flonum, cpxnum, and ratnum, respectively. Our FFI also bidirectionally maps the following types
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from Python to Scheme: str to string, tuple to vector, list to list, dict to table and bytes
to u8vector. The mapping from tuple to vector was chosen because the length of these objects
can’t change, whereas the mapping from Python list to Scheme list is both easy to remember
and justified by the fact that their length is mutable, although not exactly in the same way.

Some types are only converted unidirectionally. Scheme s8vectors are mapped to Python bytes
that are converted back to u8vector if returned to Scheme from Python. The Scheme types symbol
and char are converted to Python str and int, respectively. We have chosen not to convert Gambit
keyword objects because there is no useful mapping and it simplifies the handling of Python
functions with keyword arguments.

2.3.2 Foreign objects and passthroughs. Foreign objects can be handled by either Scheme or
CPython. From Scheme, foreign objects are CPython objects. From CPython, foreign objects
are Scheme objects. The importance of allowing transparent handling of foreign objects can be
appreciated from Figure 1. Since only a limited number of mappings are implemented and make
practical sense, a passthrough mechanism is provided. Furthermore, some mappings are unidi-
rectional. Programmers might thus prefer to store foreign objects to avoid round-trip conversion
issues or simply because they do not need to recursively convert the object’s contents. As such, we
allow programmers to directly handle foreign objects, bypassing the usual conversion process.

Scheme foreigns in Python are converted to instances of the SchemeObject class. The creation
of these passthrough objects is done by using the scheme Scheme procedure, which handles the
creation of the SchemeObject instance and the Capsule and RC object it contains. The round-trip
is garanteed, that is (eq? obj (PyObject*->object (scheme obj))) is true for any Scheme
object obj.

The analogous passthrough operation for sending CPython objects unconverted to Scheme is the
foreign Python function. The implementation creates a Python Cell object to contain the Python
object. Cell objects are used internally by CPython to represent closures and we repurpose them
for our needs instead of creating a new class. When PyObject*->object converts a reference to a
Cell it simply extracts the cell’s content by invoking the C API PyCell_Get function and no other
conversion of the Python object is done (so it will be a foreign object with tag PyObject* or a
more specific PyObject* subtype).

2.3.3 Foreign Procedure Call. Our FFI supports the bidirectional mapping of procedures. The
threading model mismatch explained in Section 2.2 requires a special mechanism to pass control
between Scheme and Python code. Because of the similarity with the Remote Procedure Call (RPC)
approach which allows calls between two machines, we have called our approach the Foreign
Procedure Call (FPC) mechanism because it allows calls to a foreign language.
When a given Scheme thread S1 performs a call to a Python function, it will be executed in

the context of some Python thread P1. For maximal usefulness it should be possible for the code
executed on the Python side to itself execute a call to a Scheme procedure (in the Scheme thread
S2) and again for this Scheme code to execute a call to a Python function (in the Python thread
P2). This interleaving of languages is not only useful in the context of callbacks; it allows arbitrary
mixing of any Scheme and Python functions transparently. We think that in the above example
of interleaved execution it is natural for the programmer to expect thread S2 to be the same as
S1 and similarly thread P2 to be the same as P1. In other words, unless explicitly told otherwise,
the system should use the same thread context during an interleaved execution. It should be no
different than a sequence of nested function calls F -> G -> H that are all executed by the same
thread when all the code is in a single language.
Our FFI realizes this model as follows. When a Scheme thread S performs a call to a Python

function for the first time (for that Scheme thread), a new Python thread P is created. We say that
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Fig. 2. The implementation of the FPC mechanism and the state when a call to the Python hex function with
argument 42 is started from Scheme.

S and P are buddy threads. This link is maintained at run time so that both S and P can quickly
find and communicate with their buddy thread. Thread P executes the Python function call that
was requested by Scheme thread S. If this Python code then performs a call to a Scheme procedure,
thread P’s buddy (the Scheme thread S) will execute the call. Note that only one of a pair of buddy
threads is executing at any point in time. The threads merely provide Scheme and Python execution
contexts and no concurrency or parallelism. When execution switches from one language to the
other the target thread resumes execution and the originating thread suspends it’s execution
waiting for the target thread to yield a result or, in the case of an interleaved execution, request the
execution of another call. The buddy threads are thus executing as coroutines and when they block
they expect to receive a message from the buddy indicating what to do next. This message will
contain a function and list of arguments when a call needs to be performed. The message contains
a result value when a foreign procedure call returns. There is also a need for a message indicating
that a foreign exception was raised so that the originator of the call can be notified of this, causing
the exception to be raised locally.
Figure 2 will be used to better explain our implementation of the FPC mechanism. It shows

the buddy threads and the objects they use to coordinate and send messages. It is a snapshot
at the moment the Scheme thread is calling the Python function hex with the argument 42. A
pair of mutexes are used: one to block the Scheme thread (a Scheme mutex) and one to block the
Python thread (an OS mutex). Both are in a locked state, and the Python thread is blocked on its
mutex, trying to lock it. The Scheme thread has constructed a message (stored in the msg field
of the python_fpc_state struct) containing the details of the call to perform (the function and
the arguments). The message is always a Python object, a tuple, because both Scheme threads
and Python threads can create Python objects with the CPython C API. Finally the Scheme thread
unlocks the OS mutex and immediately blocks trying to lock the Scheme mutex which is currently
in a locked state. Consequently the Python thread is now able to lock its mutex, read the message
and take the appropriate action, which is to call hex(42).

The roles are now reversed and it is the Python thread that constructs a returnmessage indicating
that the foreign call has ended and the value returned (the string "0x2a"). It then unlocks the
Scheme mutex (as described below), and blocks trying to lock the OS mutex. The Scheme thread
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1 def SchemeProcedure(scheme_proc):
2 def fun(*args, **kwargs):
3 kw_keys = list(kwargs.keys())
4 kw_vals = list(kwargs.values())
5 return _pfpc_call(scheme_proc, args, kw_keys, kw_vals)
6 return foreign(fun)

Listing 2. The definition of the SchemeProcedure Python function.

can now read the message and see that the foreign call has ended and it returns the value in the
message. Had the Python thread wanted to perform a Scheme call rather than returning a result
(i.e. an interleaved execution), the message would have been of type call rather than of type return
and the Scheme thread would have performed a call rather than returning.

A tricky operation to implement is the unlocking of the Scheme mutex by the Python thread. As
explained previously, most of the Gambit runtime functions can only be executed by OS threads
that are Gambit VM processors. There is however a procedural interrupt mechanism that can be
used by any OS thread to interrupt the execution of a processor and cause it to execute some
Scheme code. This is the role of the Scheme vector scheme_fpc_state whose layout is compatible
with an interrupt descriptor. When a procedural interrupt is raised using this descriptor it will
cause a Gambit VM processor to execute the procedure it contains (at index 1), and this unlocks
the Scheme mutex (at index 2).
The FPC mechanism involves more operations than a direct use of the CPython C API. The

difference in performance is most acute when each call does little work, because the overhead of
the FPC mechanism is a larger proportion of the total run time for the foreign call. On a modern
computer running Linux, the highest cost we measured for the FPC mechanism, using the foreign
call sum([0]), is 5x compared to a direct use of the CPython C API, which does not support
threaded programs. The overhead becomes negligible when the foreign function does more work
or consumes and produces more data that needs to be converted, what we consider to be the typical
use-case for our FFI.

2.3.4 Procedures. Scheme procedures are converted to Python functions by the SchemeProcedure
function as shown in Listing 2. Similarly, Python objects of type function (such as user-defined
functions), builtin_function_or_method (such as dir), method (such as class instance methods)
or method_descriptor (such as datetime.date.ctime) are converted into Scheme procedures. In
addition, any callable object (i.e. objects for which PyCallable_Check returns true) are converted
to Scheme closures. Both Gambit Scheme and Python support keyword arguments. These are
supported bidirectionally in foreign calls.
To convert Scheme procedures to Python functions, SchemeProcedure takes as argument a

Capsule holding a reference to a Scheme procedure. Using the FPC mechanism described in
Section 2.3.3, calls to the resulting Python function are essentially evaluating the following code in
Scheme:
1 (object->PyObject* (apply fn (append *args **kwargs)))

When Python callables are converted to Scheme closures, the resulting closure will hold a
reference to the Python callable. On every call, the closure performs an analysis of its arguments to
properly construct the equivalent Python *args and **kwargs. These are sent as part of the call
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1 > \2**8
2 256
3 > \secret_code=31416
4 > \[1, 2, [3, secret_code]]
5 (1 2 (3 31416))
6 > (define nb-dots 5)
7 > \(`nb-dots)*"."
8 "....."
9 > \print(42, end='xxx\n')
10 42xxx
11 > (list \1+2 +3)
12 (3 3)

Listing 3. Example SIX infix expressions.

message as described in Section 2.3.3. For performance reasons, we distinguish between simple
calls and calls with keyword arguments.

3 SYNTACTIC INTERFACE
A distinctive feature of our FFI is its high-level layer. It is a syntactic interface supported by Gambit’s
Scheme Infix eXtension (SIX). We build upon our work interfacing JavaScript with Scheme [8]
and extend the Gambit SIX infix parser to support a more Python-like syntax. Our motivations
are similar: a syntactic interface reduces the barrier to exploration and interactive development
between languages. It can allow for reusing code practically unchanged as well as prevent the
need to map language features to the FFI host syntax, which could be cumbersome and hard to
remember. Furthermore, the syntaxes of Python and Scheme are easily distinguished, which limits
confusion about which context the code will be executed in.

By interfacing from Scheme to Python at the expression level, we are able to seamlessly incorpo-
rate Python code into Scheme programs. The basic premise of our extension is that programmers
would rather write code than pass strings to an eval function. As such, Python expressions can be
constructed by toggling a parser based on a hybrid grammar which supports most JavaScript and
Python constructs in addition to the Scheme syntax. This toggling from prefix to infix is done in
the spirit of Scheme’s quasiquotation.
A backslash \ indicates to the Scheme reader that the following code should be parsed in infix

notation. Such foreign infix code can be interspersed with Scheme expressions, indicated by using
a backtick `. This tells the parser to parse and evaluate the following code as a Scheme expression.
Whitespace after a token is treated as an infix syntax terminator, except when it occurs between
parentheses. This makes for a more visually pleasing nesting of infix and prefix syntaxes in the
same program without requiring a semicolon at the end of an infix expression.

Infix expressions such as \x+1 will be converted by the parser into the s-expression
(six.infix (six.x+y (six.identifier x) (six.literal 1))). The standard definition of the
forms six.infix, six.x+y, six.x=y, etc confers a semantics close to C’s, for example expanding
\x=10 into (let ((temp 10)) (set! x temp) temp). Our FFI overrides the six.infix form so
that the s-expression will be converted to an expression or statement in the language of interest
represented as a string, which can then be evaluated by the CPython interpreter.
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1 (define (##py-function-memoized descr)
2 (let* ((x (unbox descr)))
3 (if (string? x)
4 (let ((host-fn (python-eval x)))
5 (set-box! descr host-fn)
6 host-fn)
7 x)))

Listing 4. The definition of the ##py-function-memoized Scheme procedure.

Listing 3 shows examples of the infix syntax. Note that the parser understands Python list syntax,
as shown on line 4, as well as normal and keyword arguments, as seen on line 9. These forms are
quite often used in Python code. Tuple and list comprehension syntaxes are not supported by the
SIX parser. Line 7 exemplifies the use of the ` character to evaluate Scheme expressions while in
the infix syntax. In this case, the six.infix macro gets the value of the nb-dots Scheme variable.
As for the significant whitespace, line 11 shows an expression that is parsed as a call to list with
two arguments, the expression \1+2 and the expression +3. Upon encountering the whitespace
after \1+2, the reader switches back to an infix syntax. Also note that on line 9 single quotes can
be used to delimit Python strings.

For efficiency reasons it is best not to call the Python eval function on each evaluation of a SIX
form because multiple evaluations may be needed. For example the expression \print(1+`i) will
be evaluated 10 times in the expression (for-each (lambda (i) \print(1+`i)) (iota 10)).
We get away with a single call to eval which evaluates a Python lambda form, in this case
lambda ___1: return print(1+___1), containing the code and then convert it to a Scheme
procedure. This procedure is then called 10 times, once for each evaluation of \print(1+`i). The
number of parameters of the generated lambda form is equal to the number of subexpressions
prefixed with `. This is a form of memoization. It is achieved by storing the string representation of
the lambda form in a Scheme box that is passed to the ##py-function-memoized procedure, defined
in Code Listing 4. On the first call, the string is evaluated by the CPython runtime. The box contents
is then mutated with the corresponding CPython anonymous function object created by the
lambda. This ensures that subsequent calls do not repeatedly invoke the Python compilation process
on a string. The conversions of the parameters and result to and from Python are automatically
performed, as explained in Section 2.3.
The handling of Python module imports is treated specially. We have extended the SIX parser

to support the Python import and from X import Y statements. These are statements in the
Python grammar so they must be passed to the exec function rather than eval. Our FFI currently
supports the import grammar as it is in CPython. Module imports can thus be easily performed by
invocations such as \from my_module import a, b, c as d.
Finally, note that executing Scheme code from Python is trivial using our FFI. One can easily

export Scheme functions to Python with an assignment, for example \rev=`reverse allows Python
code to call the Scheme reverse procedure under the name rev. Dynamic evaluation of Scheme
code can be obtained by exporting a scheme_eval function that receives a string, parses it and
calls the Scheme eval on it:
1 > \scheme_eval=`(lambda (s) (eval (call-with-input-string s read)))
2 > \scheme_eval("(iota 5 100)")
3 (100 101 102 103 104)
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4 EXAMPLES
Let us now give an overview of our FFI in practice. We will first show a few ways to use Python
modules from Scheme by putting the automatic conversions to good use. After these small examples,
we will present an example with some performance considerations in mind.

4.1 Simple Module Import
Importing modules at the REPL is a matter of entering an import statement using the SIX syntax,
as shown in Listing 5. Notice that the statement on line 1 looks identical to the equivalent Python
version. The Scheme cal procedure is constructed by wrapping the Python calendar module’s
month method. As such, we can easily print the calendar’s string representation as show on lines 4
to 10 of Listing 5.

1 > \import calendar
2 > (define (cal y m) \calendar.month(`y, `m))
3 > (display (cal 2022 9))
4 September 2022
5 Mo Tu We Th Fr Sa Su
6 1 2 3 4
7 5 6 7 8 9 10 11
8 12 13 14 15 16 17 18
9 19 20 21 22 23 24 25
10 26 27 28 29 30

Listing 5. Simple module import example.

CPython has access to the same stdin and stdout file descriptors as Gambit. We could have
obtained the same result by calling \print(calendar.month(2022, 9)). One interesting feature
of sharing console output and TTY is that the Python help procedure is usable within a Gambit
REPL. For example, a call to \help(hex) will fill the terminal with the Python documentation for
the builtin hex function. This help menu can be exited by pressing q, as one would do in a Python
REPL.

4.2 Poor Man’s Method Calls
Gambit Scheme has no builtin regular expressions module and does not implement SRFI 115. One
could take the time to write an interface with the PCRE C library [11], for example, or port the
implementation from SRFI 115. However, if we take the perspective of a Python programmer trying
out Scheme, importing the Python re module would be an easy solution. Listing 6 shows one way
to interface with the re module by implementing a poor man’s method call.
First, the python Gambit module is imported, which sets up the CPython VM. The Python re

module is imported on line 4. The syntactic differences highlight that the import statements on
lines 1-2 and 4 do not target the same environment. While we could start using the module right
away through the SIX interface, lines 6 through 11 define a converter for the re.Pattern type.
The Python re.Pattern objects are compiled regular expressions, which can match and search
strings for patterns. The compile procedure, defined on lines 13-15, produces re.Pattern objects,
which are converted to the procedures returned by re.Pattern-converter. This offers a rather
simple and scheme-y interface to these objects, as can be seen on line 19.
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1 (import (_six python)
2 (github.com/gambit/python))
3

4 \import re
5

6 (define (re.Pattern-converter obj)
7 (lambda (attr . args)
8 (case attr
9 ((pattern) \(`obj).pattern)
10 ((match) \(`obj).match(`(car args)))
11 ((search) \(`obj).search(`(car args))))))
12

13 (define (compile pattern)
14 (re.Pattern-converter
15 \re.compile(`pattern)))
16

17 (define pat (compile "s....e"))
18

19 (define m (pat 'search "(sch3me)"))
20

21 \print(`m)
22 ;; <re.Match object; span=(1, 7), match='sch3me'>

Listing 6. Code for the re.scm example.

4.3 Importing Packages From PyPI
As discussed in Section 2, our FFI manages its own virtual environment, which allows us to
install packages from the PyPI without fear of conflicting with existing global Python installations.
For convenience, our FFI exports the pip-install procedure, which takes a string as argument
corresponding to a package name. Thus to install the Flask package from the PyPI, we can simply
call (pip-install "flask"). Code Listing 7 shows how we can quickly build a web server using
Scheme procedures as HTTP request handlers.
We can execute this program and send HTTP requests to localhost:5000, receiving the

"hello from v4.9.4-63-g18987297" string as a response.

4.4 Plotting Data Using matplotlib

The matplotlib library is a well-known Python package available from the PyPI [5]. Its documen-
tation contains a wide variety of examples, the first one of which concerns the creation of a bar
chart [16]. Listing 8 shows a direct translation of the example code from Python to Gambit’s infix
syntax.

We can see the code looks very much like Python, and little effort was required to get it up and
running. In our experience, modifications from Python to SIX infix syntax are minimal, which is a
strength of our approach. The output of the code in Listing 8 is shown in Figure 3.
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1 (import (_six python)
2 (github.com/gambit/python))
3

4 \from flask import Flask
5

6 \app=Flask(__name__)
7

8 (define (home)
9 (string-append
10 "hello from "
11 (system-version-string)))
12

13 \app.route("/")(`home)
14

15 (define flask-thread
16 (thread
17 (lambda ()
18 (\app.run host: "127.0.0.1"
19 port: 5000))))

Listing 7. A very simple Flask application in Scheme.

4.5 More Examples
The SIX interface allows for very simple experimentation. At the REPL, one can easily install and
import packages such as requests to perform HTTP requests, pandas to perform data analysis,
pynetdicom to create DICOM services, beautifulsoup4 to parse HTML, or even Boto3 to interact
with Amazon S3. One can trivially get the weather in New York City by using the three lines of
code of Listing 9. The call on line 3 produces the following output:
"A chance of rain showers before 5am. Mostly cloudy, with a low around 73.
Northwest wind around 9 mph. Chance of precipitation is 30%."

5 RELATEDWORK
Various other Scheme implementations offer integrations with CPython [10]. The Cyclone [7] and
Chicken Scheme [2] implementations both have a Python FFI module. These modules integrate at
the CPython C API level yet also offer useful macros to quickly interface with objects and methods.
The Darkart Chez Scheme library [3] implements FFIs to various other language implementations,
including CPython. It offers Scheme libraries that wrap Python libraries such as NumPy. However,
the integration seems to be done by hand. The PyonR Python implementation is built on top of
Racket [14, 15] and uses a hybrid approach with regards to Python modules. The implementation
can access native Python modules through the CPython C API to susbtitute missing unimplemented
PyonR modules. CLPython is an implementation of Python in Common Lisp [19] which allows
interoperation between Common Lisp and Python, but not through the CPython C API. The
burgled-batteries [12] Common Lisp package is an effort to implement a deep integration to
CPython through its FFI. Our work shares similarities with the above projects, but distinguishes
itself by the addition of a syntactic interface and a threaded FPC mechanism.
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1 (import (_six python)
2 (github.com/gambit/python))
3

4 \import matplotlib.pyplot as plt
5 \import numpy as np
6

7 (define N 5)
8 (define men-means (vector 20 35 30 35 -27))
9 (define women-means (vector 25 32 34 20 -25))
10 (define men-std (vector 2 3 4 1 2))
11 (define women-std (vector 3 5 2 3 3))
12 (define ind \np.arange(`N))
13 (define width 0.35)
14

15 \fig_ax=plt.subplots()
16 \fig=fig_ax[0]
17 \ax=fig_ax[1]
18

19 \p1=ax.bar(`ind, `men-means, `width, yerr=`men-std, label='Men')
20 \p2=ax.bar(`ind, `women-means, `width, bottom=`men-means,
21 yerr=`women-std, label='Women')
22

23 \ax.axhline(0, color='grey', linewidth=0.8)
24 \ax.set_ylabel('Scores')
25 \ax.set_title('Scores by group and gender')
26 \ax.set_xticks(`ind, labels=['G1', 'G2', 'G3', 'G4', 'G5'])
27 \ax.legend()
28

29 \ax.bar_label(p1, label_type='center')
30 \ax.bar_label(p2, label_type='center')
31 \ax.bar_label(p2)
32

33 \plt.show()

Listing 8. The code for the matplotlib.scm example.

1 \import requests
2 \r=requests.get("https://api.weather.gov/gridpoints/OKX/35,35/forecast")
3 (table-ref \r.json()["properties"]["periods"][0] "detailedForecast")

Listing 9. Getting weather forecasts from the weather.gov API.

6 CONCLUSION
We have presented the syntactic and low-level interfaces of Gambit Scheme’s FFI to CPython. Devel-
opment of this FFI required working at various levels of the Gambit and CPython implementations
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Fig. 3. A reproduction of the matplotlib Bar Label Demo code in Gambit Scheme.

from memory management to the implementation of the hybrid SIX infix parser. A defining feature
of our FFI is its FPC design which allows seamless interoperation between the Gambit and Python
threading models. These development efforts are largely offset by the ease with which we can now
access Python packages from Gambit Scheme programs.

In future work, we plan to implement automatic generation of R7RS modules that wrap Python
modules. An important unimplemented feature is the ability to have custom automatic conversions.
We also intend to explore a higher-level interface to Python modules and classes using Scheme
macros to generate interface code, as is done in Cyclone Scheme’s pyffi. We believe this is especially
interesting for large, complex modules such as NumPy [4] and SciPy [18]. With a careful design
of the Scheme module interface and proper macros, we think it could be possible to offer a large
amount of Python modules which would look and feel like they were written in pure Scheme.
Finally, we are interested in reducing the interoperation cost to gain even more performance.
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